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Abstract

We propose sharp interface, phase field and level set models for bidirectional diffusion induced grain boundary

motion in thin films. Numerical approximations of these models are presented together with computational results

comparing the approximate solutions.
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1. Introduction

Grain boundaries in metallic alloys arise as a result of misorientations between otherwise identical

crystals. Mathematical models for the dynamics of such boundaries, in particular for diffusion induced

grain boundary motion, have been studied in [3,6,9,10]. Diffusion induced grain boundary motion can be
observed if a polycrystalline film of a metal is placed in a vapour containing another metal; atoms from the

vapour diffuse into the film along the grain boundaries leading to variations of composition of the alloy

which induces a driving force causing them to move. Solute vapour atoms are then left behind leaving

alloyed regions which have been swept out by the moving grain boundary. It is believed that variations in

elastic energy due to changes in composition provide a principal driving force. We refer to [11] for a

material science review and [3] for a discussion of mechanisms for the driving force in the context of a phase

field model.
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The physical setup we consider is a thin film of height 2H (H small) with vapour supplied at its top and

bottom faces (z ¼ �H and z ¼ H ), see Fig. 1. The dashed line represents the position of a grain boundary at

some initial time t ¼ 0, while the solid line denotes its position after some time t > 0. The diffusion of solute

atoms from the vapour into the film along the grain boundary creates a new region of crystalline structure
behind the evolving boundary; this is the shaded region depicted in Fig. 1. Due to the thin film nature we

assume independence of the z-direction and reduce the problem to a two-dimensional one for

x 2 X :¼ ð0; LxÞ � ð0; LyÞ, where X corresponds to the top face of the film and C denotes the trace of a single

grain boundary (that takes the form of a simple closed curve with unit normal pointing outwards) on X.

The setup shown in Fig. 1 of a film of uniform thickness containing a single grain boundary spanning its

height and width is considered in [3] where a double obstacle phase field model for this problem is presented

in which the diffuse interface is of finite thickness OðeÞ. In [9] formal asymptotics on the phase field model

for e ! 0 are used to obtain a sharp interface model

qV ¼ j þ f ðuÞ; ð1:1Þ
e1ut ¼ uss � Vuð1þ e2jÞ; ð1:2Þ

where q is a given positive non-dimensional material constant, u denotes the concentration of solute atoms
in the film, V , j and s, respectively, denote the normal velocity, the curvature and the arc-length of the

sharp interface and ei ¼ OðeÞ i ¼ 1; 2. Eq. (1.1) is motion by mean curvature with a forcing dependent on

concentration. Diffusion within the grain boundary is modelled by Eq. (1.2). As the grain boundary moves

through the crystal it leaves a trace of vapour atoms within the crystal.

The OðeÞ terms are in fact set to zero in [9] but are retained in [6] where independence of the y direction in

Fig. 1 is assumed yielding a two-dimensional problem. The authors consider a simplified two-dimensional

form of the phase field model presented in [3] together with two forms, one using a graph approach and the

other a parametric approach, of the sharp interface model (1.1), (1.2). A finite element approximation of the
phase field model is derived and is shown to converge to a weak solution. Also some numerical compu-

tations are presented that compare solutions of the phase field and sharp interface models. The existence of

a unique weak solution to one form of the phase field system was proved in [4] while in [12] a local existence

and uniqueness result for (1.1), (1.2) was obtained.

One important limitation with the theory derived in [3,9] is that only unidirectional models are allowed,

such that at the outset the initial data together with reaction terms in the partial differential equations give

rise to motion in a specific direction relative to the grain boundary. This limitation is eliminated in [10]

where an extended sharp interface model for chemically induced grain boundary motion in the case of thin
metallic films is presented. The model is that of forced mean curvature where the forcing is allowed to be 	1

or 0 on varying parts of the interface. There is no explicit concentration field. Numerical simulations are

presented in [10] which illustrate the important morphological and stability effects associated with

Fig. 1. Physical setup.
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bidirectional motion. The authors solve initial value problems for nonlinear parabolic PDEs using a fourth-

order Runge–Kutta method in time and central differences in space. In the following we extend the ideas

presented in [10] by introducing a concentration field uðx; tÞ and an equation for its evolution and by setting

the forcing term f ðuÞ in (1.1) equal to the jump in concentration across C. Due to the thin film nature of the

setup we assume that diffusion of the solute atoms takes place very rapidly and hence we set the concen-

tration u to equal 1 at all points of the film that C has passed through. This leads to the concentration field

uðx; tÞ being discontinuous.

Typically for curvature dependent interface motion, see [8], there are three main numerical approaches:
direct approximation of the sharp interface law, phase field and level set. In Section 2 we propose ap-

propriate versions of these three approaches for chemically induced bidirectional grain boundary motion

and in Section 3 we derive numerical approximations of these three models. We conclude with Section 4 in

which we present numerical computations showing the appearance of S-shaped boundaries and double

seams that are commonly observed experimentally, we also include comparisons of the approximate so-

lutions of the three models.

2. Models

This section comprises of thin film models for chemically induced bidirectional grain boundary dy-

namics. We begin by introducing the free boundary model presented in [10]. Due to the thin film setup it is

shown in [10] that the grain boundary C is almost vertical through the film and that the concentration of

solute atoms u is close to 1. Thus taking f ðuÞ ¼ 1 in (1.1) and rescaling time to eliminate the factor q they

arrive at the following free boundary problem

V0 ¼ j0 	 1; ð2:1Þ

where V0 and j0, respectively, denote the normal velocity and the curvature of C0, which is the intersection

of C with the top face of the thin film. That is, in order to allow for bidirectional motion of the interface

C0ðtÞ they conceive it as being composed of two parts Cþ
0 ðtÞ and C�

0 ðtÞ, such that Cþ
0 is the part of the

boundary that moves in the positive normal direction and C�
0 moves in the negative normal direction, see

Fig. 2. Using (2.1) we have, after dropping the subscript �0� for simplicity of notation,

V ¼ j þ 1 > 0 on CþðtÞ ð2:2Þ

and on C�ðtÞ

V ¼ j � 1 < 0 on C�ðtÞ: ð2:3Þ

The forcing term is taken to change discontinuously from þ1 to �1 as one passes through such a transition

point P . At such transition points the smoothing effect of curvature is still felt and this prevents corners

occurring at such points. Observe that if the curvature is small then the two parts of the interface will move

in different directions. Another situation can then occur where the grain boundaries wish to enter a region

Fig. 2. Bidirectional motion.
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which has already been swept out by the earlier evolution of the interface. In such a region there should be

no driving force on the grain boundary.

We extend the ideas presented in [10] by explicitly introducing a concentration field and a law for its

evolution. We set the forcing term f ðuÞ in (1.1) equal to the jump in concentration across C and set the

concentration u to equal 1 at all points of the film that C has passed through. We suppose that the con-

centration u takes either the value 1 or 0 and that it jumps across curves. It follows that for a curve C we

may set

u½ �C ¼ uþ � u�;

where uþ is the limit of u on C from the positive normal direction m and u� is the limit on C from the
negative normal direction �m, see Fig. 3. We arrive at the following model:

V ¼ j � ½u�C; ð2:4Þ

uðx; tÞ ¼ 1 8ðx; tÞ such that x 2 Cð�ttÞ for some �tt6 t;
0 otherwise:

�
ð2:5Þ

Eq. (2.5) is our evolution law for the concentration. It says that diffusion into the grain boundary is in-
stantaneous and that solute is left behind in the crystal as the grain boundary migrates. A possible scenario

is depicted in Fig. 3, in which the dashed line denotes the initial grain boundary, the solid line the grain

boundary at time t > 0 and the hashed region contains solute. Note that the normal arrows in this figure

always have the same orientation with respect to to the curve C. This morphology arises from an initial

curved grain boundary (dashed line) with initial concentration such that either there is a single transition

point on the initial boundary, so that as time evolves the part of the boundary to the left of the transition

point moves upwards and the part to the right moves downwards or there is a middle region in which the

curve moves according to curvature with no forcing. See, for example, the numerical computations dis-
played in Figs. 11 and 14.

If initially there is no concentration in the crystal then there is no jump in concentration to provide a

driving force. The direction of the motion is also ambiguous. Our model (2.4), (2.5) requires initial con-

ditions which are the initial location of the interface and that the initial concentration is defined everywhere.

We now give an example of initial conditions. Suppose that the initial grain boundary is Cð0Þ. We suppose

that the film is unalloyed so that the concentration is zero away from the grain boundary apart from a very

Fig. 3. Jump in concentration.
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small region in the neighbourhood of Cð0Þ. That is, in order to initiate bidirectional motion we impose

initial data on u such that

uðx; 0Þ ¼ 1 8x 2 R :¼ fKþ
a [ K�

a g;
0 8x 2 X nR;

�
ð2:6Þ

where Kþ
a and K�

a , respectively, denote strips of width a lying parallel to Cð0Þ such that Kþ
a lies on the

negative normal side of Cþð0Þ and K�
a lies on the positive normal side of C�ð0Þ, see Fig. 4. Thus we have

partitioned the initial interface Cð0Þ into Cþð0Þ evolving in the positive normal direction and C�ð0Þ evolving
in the negative normal direction. From the mathematical point of view a is required to be positive but can

be arbitrarily small. The choice of K	
a determines the subsequent evolution. From the computational point

of view we will see that a has to be at least the order of a grid size in order for the numerical schemes to

observe K	
a .

Clearly the problem (2.4)–(2.6) is a novel initial value problem for interface evolution. It is not clear that

a general existence theory could be set out. However in the following we set out a parametric formulation in
Section 2.1 and develop a phase field model in Section 2.2. A level set formulation of the sharp interface

model is proposed in Section 2.3. These provide the basis for computational models.

2.1. Sharp interface model

Using a parameterization Xðp; tÞ ¼ ðxðp; tÞ; yðp; tÞÞ of CðtÞ, where p is a spatial parameter and t is time as

in [6], (2.4) takes the form

Xt ¼
Xpp

jXpj2
� u½ �C

X?
p

jXpj
; ð2:7Þ

where

X : ½0; 1� � ½0; T � ! R2; ðp; tÞ ! Xðp; tÞ;

and ðb1; b2Þ
? ¼ ðb2;�b1Þ. Furthermore (2.5) amounts to setting

uðx; tÞ ¼ 1 if either 9�tt < t and �pp 2 ½0; 1� : Xð�pp;�ttÞ ¼ x; for t > 0 or uðx; 0Þ ¼ 1;

0 otherwise:

(
ð2:8Þ

Fig. 4. Initial data.
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For initial data we set Xðp; 0Þ to be a parameterization of Cð0Þ and

uðx; 0Þ ¼ 1 8x 2 R :¼ fKþ
a [ K�

a g;
0 8x 2 X nR:

�
ð2:9Þ

Since we are studying a closed curve we require that

Xðp; tÞ ¼ Xð1þ p; tÞ 8p: ð2:10Þ

Remark. To model a single grain boundary that spans the width of X and meets the boundaries x ¼ 0

and x ¼ Lx orthogonally we simply replace (2.10) with the following boundary conditions for X ¼
ðxðp; tÞ; yðp; tÞÞ:

xð0; tÞ ¼ 0; xð1; tÞ ¼ Lx; ypð0; tÞ ¼ ypð1; tÞ ¼ 0: ð2:11Þ

2.2. Phase field model

We propose the following phase field model for bidirectional chemically induced grain boundary motion:

ut � Du � 1

e2
u þ bðuÞ � pF½u;u�

4e
3 0 in X � ð0; T Þ; ð2:12Þ

F½u;u� ¼ uðxþ dþ
umu; tÞ � uðx� d�

umu; tÞ; ð2:13Þ

cut þ ~bbðuÞ � ð1� u2Þ 3 0 in X � ð0; T Þ ð2:14Þ

with 0 < c � 1, mu ¼ ru=jruj,

d	
u ¼ min r : r 2 r 2 Rþ : juðx

�
	 rmuÞj ¼ 	 1

�
and

bðrÞ ¼
ð�1; 0� for r ¼ �1;
0 for jrj < 1;
½0;1Þ for r ¼ 1;

8<: ~bbðrÞ ¼
0 for r < 1;
½0;1Þ for r ¼ 1;
1 for r > 1:

8<:
Here u and u are dimensionless field variables with u 2 ½0; 1� representing the concentration of solute atoms

in the film and �16u6 1 distinguishing the two crystals. The grain boundary is represented by the in-

terfacial region XC :¼ f�1 < u < 1g with width OðeÞ such that u takes the value þ1 on one side of the grain

boundary and �1 on the other side. Eq. (2.12) is a double obstacle Allen Cahn equation, see [1], with a non-

local forcing term F½u;u� that mimics the jump in concentration across the interfacial region. The choice of

d	
u allows the testing of the values of the concentration on either side of the diffuse interfacial region in the

normal direction. The scaling is chosen so that interface asymptotics e ! 0 formally yield (2.4). The order

parameter u takes the value 	1 exactly outside a narrow diffuse interfacial region whose width as e ! 0 is
pe. On the other hand (2.14) is a time relaxation of (2.5) with relaxation time c. For initial data we define

dðxÞ ¼ distðx;Cð0ÞÞ and set

uðx; 0Þ ¼
�1 for dðxÞ6 � ep

2
;

sin dðxÞ
e

� 	
for � ep

2
< dðxÞ < ep

2
;

1 for dðxÞP ep
2
;

8><>: ð2:15Þ
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uðx; 0Þ ¼ 1 8x 2 R :¼ Kþ
ep
2
[ K�

ep
2

n o
;

0 8x 2 X nR

(
ð2:16Þ

and we impose the boundary condition

ou
om

¼ 0 on oX � ð0; T Þ: ð2:17Þ

Weak formulations of (2.12) and (2.14) take the respective formsZ
X

ðgð � uÞut þru � rðg � uÞÞdxP
Z

X

u
e2

�
þ pF½u;u�

4e

�
ðg � uÞ dx 8g 2 K; ð2:18Þ

Z
X

cut
�

� ð1� u2Þ
�
ðg � uÞ dxP 0 8g 2 eKK ; ð2:19Þ

where

K ¼ fg 2 H 1ðXÞ : jgj6 1 in Xg and eKK ¼ fg 2 H 1ðXÞ : g6 1 in Xg:

Remark 1. We note that the model (2.12)–(2.17) also holds for the setup of a single grain boundary

spanning the width of X and meeting the faces x ¼ 0 and x ¼ Lx orthogonally.

Remark 2. An alternative to (2.14) is to impose

uðx; tÞ ¼ 1 if either 9�tt6 t : juðx;�ttÞj < eu
2
; or uðx; 0Þ ¼ 1;

0 otherwise:

�
Taking eu ¼ 0 would be a phase field analogue of (2.5).

This kind of model for approximating (2.5) is used in the level set computations, see below.

Remark 3. One could also replace (2.14) by a general law

cut þ gðu;uÞ ¼ 0

which drives u to 1 in the interfacial region juj < 1. For example one could take

gðu;uÞ ¼ ðu� 1Þð1� u2Þ

which is a form of the following Newton law:

ut ¼ mðuÞð1� uÞ

for mass transfer between the vapour and the film. Here the mass transfer coefficient mðuÞ is non-zero only

in the grain boundary.

2.3. Level set model

We now define a level set formulation of the sharp interface model. The grain boundary C is denoted by

the zero set of a sufficiently smooth function x : R2 � ð0; T Þ ! R so that C ¼ fx 2 R2 : xðx; tÞ ¼ 0g. From
[14] we have that if C moves with a known speed F then the evolution equation for x is given by
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xt þ F jrxj ¼ 0. Mimicking the jump in concentration across C by F½u;x� similar to the forcing term F
proposed in the phase field model we arrive at the following evolution equation for x:

xt � jrxjF½u;x� ¼ jrxjr � rx
jrxj

� �
: ð2:20Þ

Since we are only interested in the value of x in a small neighbourhood of the curve C when solving (2.20)

we adopt a narrow band/reinitialization approach of the kind presented computationally in [14]. Using this

approach we solve (2.20) in a narrow band of width 2e, 0 < e � 1. To ensure that C is always contained in

the narrow band once it gets within a certain distance of the band�s boundary a re-initialization procedure is

implemented whereby a new band is calculated by solving the eikonal equation

jrxj ¼ 1: ð2:21Þ

Outside the band we set x ¼ 	e accordingly. We calculate the forcing term inside the band using

F½u;x� ¼ uðxþ dþ
xmx; tÞ � uðx� d�

xmx; tÞ; ð2:22Þ

where mx ¼ rx=jrxj and

d	
x ¼ min r : r 2 r 2 Rþ : jxðxf 	 rmxÞj ¼ 	 eg:

Furthermore, we set

uðx; tÞ ¼ 1 if either 9�tt6 t : jxðx;�ttÞj < ex
2
; or uðx; 0Þ ¼ 1;

0 otherwise:

�
ð2:23Þ

Taking ex ¼ 0 would be the level set formulation of (2.5). Alternatively we could use the level set

version of (2.5) equivalent to the time relaxation used in the phase field model, but for the purpose of

this article we use (2.23) with ex ¼ e. For initial data that satisfies (2.6) we define dðxÞ ¼ distðx;Cð0ÞÞ
and set

xðx; 0Þ ¼
�e for dðxÞ6 � e;
dðxÞ for � e < dðxÞ < e;
e for dðxÞP e;

8<: uðx; 0Þ ¼ 1 8x 2 R :¼ fKþ
e [ K�

e g;
0 8x 2 X nR

�
ð2:24Þ

and we impose the boundary condition

ox
om

¼ 0 on oX � ð0; T Þ: ð2:25Þ

3. Numerical discretizations

In this section we derive numerical approximations of the sharp interface, phase field and level set
models presented in Section 2.

3.1. Sharp interface model

We discretize the parametric formulation of the sharp interface model (2.7), (2.8) using the mass lumping

approach first introduced in [7], this gives the following difference scheme for j ¼ 1; . . . ;M � 1:
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1

2Dt
ððhnjþ1Þ

2 þ ðhnj Þ
2ÞðXnþ1

j � Xn
j Þ ¼ Xnþ1

jþ1 � 2Xnþ1
j þ Xnþ1

j�1 �
hnjþ1

2
ðXn

jþ1Þ
?

�
� ðXn

j Þ
?
	
Fj unh;X

n
h

� �
�
hnj
2

ðXn
j Þ

?
�

� ðXn
j�1Þ

?
	
Fj unh;X

n
h

� �
; ð3:1Þ

where hnj ¼ jXn
j � Xn

j�1j and Fj½unh;Xn
h� which is defined later is an approximation to the jump in concen-

tration across X. Here Xn
j ¼ ðxnj ; ynj Þ ¼ Xðsj; tÞ for all t 2 ½nDt; ðnþ 1ÞDtÞ, j ¼ ð0; . . . ;MÞ is the discrete so-

lution and each Xj ¼ ðxj; yjÞ is a vector in R2 with

Xn
0 ¼ Xn

M 8n > 0:

In order to evaluate a discrete form of (2.7) we require values of unhðxÞ for all x 2 X and not just for values

of x on the interface C. Thus we introduce a �background� fine, uniform meshM with grid size ~hh and for any

x 2 X we define ðxÞm to be its nearest node on M. This enables us to approximate ½u�C by

Fj unh;X
n
h

� �
¼ unh ðXn

j

�
þ dmnj Þ

m
	
� unh ðXn

j

�
� dmnj Þ

m
	
; ð3:2Þ

where mnj ¼ ðXn
j Þ

?
s =jðX

n
j Þsj with ðXn

j Þ
?
s ¼ ynjþ1 � ynj�1; x

n
jþ1 � xnj�1

� 	
. We choose d to be Oð~hhÞ so that we test the

values of unh on either side of the interface. We update unþ1
h ðxÞ for all x 2 M in the following way:

unþ1
h ðxÞ ¼ 1 if x 2 Si; i ¼ 0; . . . ;M � 1;

unhðxÞ otherwise;

�
where Si denotes the area enclosed by the four lines that join the points ðXn

i Þ
m
and ðXnþ1

i Þm, ðXn
iþ1Þ

m
and

ðXnþ1
iþ1 Þ

m
, ðXn

i Þ
m
and ðXn

iþ1Þ
m
and ðXnþ1

i Þm and ðXnþ1
iþ1 Þ

m
, see Fig. 5.

Remark. For the case of a single grain boundary spanning the width of X satisfying (2.11) we use the

techniques introduced in [5] to obtain

xnþ1
0 ¼ 0; xnþ1

M ¼ Lx; ð3:3Þ

1

2Dt
ðhn1Þ

2ðynþ1
0 � yn0Þ ¼ ðynþ1

1 � ynþ1
0 Þ � hn1

2
ðxn1Þ

?�
� ðxn0Þ

?�
F0 unh;X

n
h

� �
;

1

2Dt
ðhnMÞ

2ðynþ1
M � ynMÞ ¼ ðynþ1

M�1 � ynþ1
M Þ � hnM

2
ðxnMÞ

?�
� ðxnM�1Þ

?�
FM�1 unh;X

n
h

� �
:

Fig. 5. Updating unh.
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3.2. Phase field model

Before we derive a numerical discretization of the phase field model (2.18), (2.19) we introduce some

useful notation.

We set Th to be a quasi-uniform triangulation of X with h :¼ maxT2Th diamðT Þ and we denote by

Nh ¼ fx1; . . . ; xMg the set of nodes of Th with fn1; . . . ; nMg denoting the corresponding standard basis of

Sh, where

Sh :¼ v 2 C0ðXÞ : v is linear on each T 2 Th

� �
:

Furthermore, we set

Kh :¼ fg 2 Sh : jgðxÞj6 1 for all x 2 Xg and eKKh :¼ fg 2 Sh : gðxÞ6 1 for all x 2 Xg;

and we let Dt > 0 be a time step with tn ¼ nDt; nP 0.

Finally for a given node xj we denote by Cj the set of nodes directly adjacent to xj and we split Nh into

three sets, Nn
C, N

n
þ and Nn

�, where

Nn
	 ¼ fxj 2 Nh : un

j ¼ 	1 and un
k ¼ 	1 for all nodes xk 2 Cjg;

Nn
C ¼ Nh n ½Nn

þ [Nn
��:

From the above definitions we see that the nodes xj 2 Nn
C are situated in a discrete approximation of the

interfacial region XCðtÞ ¼ f�1 < u < 1g, while the nodes xj 2 Nn
þ and xj 2 Nn

� are situated in discrete

approximations of regions where uðx; tÞ ¼ 1 and uðx; tÞ ¼ �1, respectively.

We now derive a finite element approximation of (2.18), (2.19):

Find funþ1
h ; unþ1

h g 2 Kh � eKKh such that

1

Dt
unþ1

h

�
� un

h; g � unþ1
h

�
h
þ
Z

X
run

h � rðg � unþ1
h ÞP

un
h

e2

�
þ

pF unh;u
n
h

� �
4e

; g � unþ1
h

�
h

8g 2 Kh; ð3:4Þ

unþ1
h

�
� unh; g � unþ1

h

�
h
� cDt 1

�
� ðun

hÞ
2
; g � unþ1

h

	
h
P 0 8g 2 eKKh; ð3:5Þ

where for each node xj of Th

Fj unh;u
n
h

� �
¼ unðxkþÞ � unðxk�Þ;

with

xk	 ¼ ðxj 	 d	
umuÞm

such that

d	
u ¼ min r : r 2 r 2 Rþ : ðxj

�
	 rmuÞm 2 Nn

	
�

and for any x 2 X we define ðxÞm to be the nearest node in Nh. Here ð�; �Þh denotes the discrete inner

product on L2ðXÞ, defined by

ðg1; g2Þh :¼
Z

X
Phðg1g2Þ dx;

where Ph : CðXÞ ! Sh is the standard piecewise linear interpolation operator.
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We may view e as an approximation parameter for the sharp interface problem and in order to resolve

the interfacial region we set h � e. Note that if h ’ pe=N then there are approximately N grid points

spanning the diffuse interface. Since the discretization (3.4) is explicit in time and the only term involving

unþ1
h is the lumped mass L2 inner product it is well known that the discrete variational inequality (3.4) can be

solved in the following way. First we calculate the explicit equation update ~uunþ1
h by solving

1

Dt
ð~uunþ1

h � un
h; gÞh þ

Z
X
run

h � rg ¼ un
h

e2

�
þ

pF unh;u
n
h

� �
4e

; g

�
h

8g 2 Sh ð3:6Þ

and then we project onto Kh by setting at each node xi of the triangulation

unþ1
i ¼

�1 if ~uunþ1
i 6 � 1;

~uunþ1
i if � 1 < ~uunþ1

i < 1;
1 if ~uunþ1

i P 1;

8><>: ð3:7Þ

where unþ1
i :¼ unþ1

h ðxiÞ and ~uunþ1
i :¼ ~uunþ1

h ðxiÞ. Similarly we solve (3.5) by calculating ~uunþ1
h by solving

~uunþ1
h

�
� unh; g

	
h
¼ cDt 1

�
� ðun

hÞ
2
; g
	
h

and then projecting onto eKKh by setting at each node xi of the triangulation

unþ1
i ¼ ~uunþ1

i if ~uunþ1
i < 1;

1 if ~uunþ1
i P 1:

(

For the initial data u0
hðxÞ and u0hðxÞ we use interpolates of (2.15) and (2.16). Setting g ¼ nj in (3.5)

yields

unþ1
j ¼ unj 8xj 2 Nn

þ [Nn
� ð3:8Þ

and hence we only need to solve (3.5) for all xj 2 Nn
C. Similarly setting g ¼ nj in (3.6) it follows that:

~uunþ1
j ¼ 1þ Dt

e2
1

�
þ pe

4
Fj unh;u

n
h

� �	
8xj 2 Nn

þ;

~uunþ1
j ¼ �1� Dt

e2
1

�
� pe

4
Fj unh;u

n
h

� �	
8xj 2 Nn

�:

Choosing e sufficiently small such that 1P ðpe=4Þmax jFj ¼ pe
4
(since jF½u;u�j6 1) from (3.7) we conclude

~uunþ1
j 6 � 1 if un

j ¼ �1

~uunþ1
j P 1 if un

j ¼ 1

)
) unþ1

j ¼ un
j 8xj 2 Nn

þ [Nn
�:

Thus we only need to solve (3.4) for all xj 2 Nn
C. The condition e6 4=p is not a restriction on e from a

practical point of view. For stability of the scheme (3.4) we require Dt6Cmh2, where Cm is a mesh constant.

In the case of a uniform right-angled isosceles triangulation Cm ¼ 1=4.

3.3. Level set model

We discretize a regularized version of (2.20) on a uniform grid, with mesh size h and time step Dt, using a

second-order central finite difference approximation on the right-hand side and an upwind scheme on the
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left-hand side, see [2] for a finite difference scheme for the motion of level set surfaces by mean curvature

and [14] for level set discretizations in general. Setting ½v�þ :¼ maxðv; 0Þ and ½v�� :¼ minðv; 0Þ, for ~ee � 1 this

yields the following:

1

Dt
ðxnþ1

ij � xn
ijÞ ¼ Fn

ij

h i
�
rþðxn

ijÞ
�

þ Fn
ij

h i
þ
r�ðxn

ijÞ
�
þ jrðwn

ijÞjjn
ij; ð3:9Þ

where (suppressing the superscript n)

r	ðxijÞ ¼ ½ðxijÞ�x�2þ
�

þ ½ðxijÞ	x�2� þ ½ðxijÞ�y �2þ þ ½ðxijÞ	y �2�
	1=2

;

with

ðxijÞ	x ¼ 	ðxi	1j � xijÞ
h

; ðxijÞ	y ¼ 	ðxij	1 � xijÞ
h

and standard central differences were used to approximate

jrwijjjij ¼ jrwijjr � rxij

jrxijj2 þ �ee2
� 	1

2

0BB@
1CCA:

The parameter �ee ¼ OðhÞ is introduced to avoid dividing by zero.
In order to approximate (2.23) we set

unij ¼
1 if jxn

ijj < e
2
;

0 otherwise

�
ð3:10Þ

and when discretizing (2.22) we adapt the approach formulated in the phase field discretization and set for
each grid point xij

Fij unh;x
n
h

� �
¼ unðxðklÞþÞ � unðxðklÞ�Þ;

with

xðklÞ	 ¼ ðxij 	 d	
xmijÞm

such that

d	
x ¼ min r : r 2 r 2 Rþ : ðxij

�
	 rmijÞm 2 Nn

	
�

with

mij ¼
xn

iþ1j � xn
i�1j;x

n
ijþ1 � xn

ij�1

� 	
ðxn

iþ1j � xn
i�1jÞ

2 þ ðxn
ijþ1 � xn

ij�1Þ
2

� 	1=2
:

Here for any x 2 X we define ðxÞm to be its nearest node in the uniform grid N, and we denote

Nn
	 ¼ fxij 2 N : xn

ij ¼ 	e and xn
kl ¼ 	e for all grid points xkl 2 fxi�1j; xiþ1j; xij�1; xijþ1gg:
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In [2] a stability analysis of an explicit time discretization for a level set approach to mean curvature flow

indicates that for stability we require Dt6CMh2. We solve (3.9) and (3.10) using the narrow band/re-ini-

tialization procedure.

Step 1. Set 0 < êe < e and 0 < ~ee < e� < e.
Step 2. Set B :¼ fij 2 N : jx0

ijj < eg and dðBÞ :¼ fij 2 B : jx0
ijj > e�g.

Step 3. Solve (3.9) and (3.10) for all ij 2 B until there exists a K 2 N such that

jxK
ij j < ~ee for some ij 2 dðBÞ:

Step 4. Re-evaluate xK
ij for all ij 2 N by solving jrxjh ¼ 1 (see below) with the boundary condition

xK
ij ¼ xn

ij when jxn
ijj < êe:

Step 5. Reset B :¼ fij 2 N : jxK
ij j < eg and dðBÞ :¼ fij 2 B : jxK

ij j > e�g.
Step 6. Return to Step 3.

A choice of parameters that we have used in the computations below is e; e�; ~ee; êe:

e ¼ 7h; e� ¼ 3e
4
; ~ee ¼ e

2
; êe ¼ e

5
:

The procedure outlined in Step 3 is known as re-initialization and can be efficiently implemented using the

fast marching method defined in [14]. For completeness we include a brief description of the fast marching

method; this method allows us to solve (2.21) without iteration. An upwind scheme given in [13] for solving

(2.21) is the following:

jrxjh :¼ maxððxijÞ�x
;�ðxijÞþx

; 0Þ2 þmaxððxijÞ�y
;�ðxijÞþy

; 0Þ2 ¼ 1: ð3:11Þ

The idea behind the fast marching method is to systematically construct the solution x using only upwind

values. All grid points in the narrow band with the exception of those where jxn
ijj6 êe (for some êe < e) are

updated and the key is the order in which they are updated. In particular the following update procedure is

used: First tag all grid points where jxn
ijj6 êe as known. Then tag as trial all points that are one grid point

away from a known point. Finally tag as far all remaining points. Now use the following procedure:

Step 1. Let A be the trial point with smallest x value.

Step 2. Add A to known and remove it from trial.
Step 3. Tag all neighbours of A as trial if they are not known.

Step 4. Recompute the values of x at all trial neighbours of A according to (3.11).

Step 5. Return to Step 1.

4. Numerical results

In this section we present numerical simulations using the three discretizations derived in Section 3. The

bulk of the computations reproduces the numerical simulations presented in [10] which illustrate the fol-

lowing three effects associated with bidirectional motion: the formation of double seams, whereby a grain

boundary doubles back on itself, a threshold effect between evolutions to stable S-configurations and
double seams and the migration of transition points between parts of the grain boundary that move in

alternating directions. Examples of these effects are displayed in Figs. 6–9 whose results are obtained using

the sharp interface discretization presented in Section 3.1 and take the following form: for each simulation

two subplots are presented, in each case the left-hand plots displays the grain boundary evolving in time to

some final time �tt, while the right-hand plot shows the alloyed region at the final time �tt. In the remaining
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four figures, Figs. 10–13, the approximate solutions of the three models are compared. When comparing

sharp interface solutions with either phase field or level set solutions we plot a ��� at every ~nnth node of the

sharp interface discretization and a contour plot of either the phase field order parameter u or the level set

function x.

Figs. 6 and 7 display the evolution of an initially straight grain boundary Cð0Þ that spans X and is
decomposed equally into Cþð0Þ and C�ð0Þ with a single transition point between the two segments. Due to

the natural symmetry of the problem we expect Cþ and C� to evolve in time while the transition point

between them remains fixed and indeed this is what we see. In [10] it is observed that in such setups if Lx 6 2

an exact stationary solution exists that is the arc of a circle of radius 1 pinned to the boundary points (see

Fig. 6). Whereas for Lx > 2 no such stationary solution exists and the length of the grain boundary increases

unboundedly until it hits the boundary of the domain (see Fig. 7).

In Fig. 8 we remove the natural transition point symmetry imposed in the previous figures and display

the evolution of a creeping transition point. In the left-hand subplot it can be seen that there are three
transitions points which are located 1/3, 1/2 and 2/3 in distance along the initial grain boundary. This gives

rise in the middle third to upward (downward) motion directly to the left (right) of the centre point, whilst

the remaining two thirds of the boundary moves downward (upward) at the left (right) end. As time evolves

the two non-central transition points move towards each other and eventually all three merge. Subse-

quently the boundary to the left of centre moves downward, whilst the right moves upward. This motion

gives rise to the alloyed region depicted in the right-hand subplot. Fig. 9 displays the evolution of a single

closed curve grain boundary that initially has six transition points between sections of Cþ and C�. We note

that the step discontinuities that are observed in the concentration plots, but not the grain boundary plots
of Figs. 6–9 arise due to the specific choice of initial data for the concentration, recall (2.6) and Fig. 4.

Fig. 6. Sharp interface stationary arc solutions with Lx ¼ 1 and Lx ¼ 2.
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Figs. 10 and 12 compare sharp interface and phase field simulations. In each case the top left-hand

subplot displays contour plots of the approximate phase field solution u while the top right-hand plot

displays the approximate sharp interface solution. The bottom subplots compare close-ups of the sharp

interface and phase field solutions in two parts of the domain. We do not show a simulation of the con-

Fig. 8. Evolutionary sharp interface solutions with migrating transition points.

Fig. 7. Evolutionary sharp interface solutions with Lx ¼ 4 and Lx ¼ 20.
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centrations for the two models as on the scales shown they are indistinguishable. In Fig. 10 Lx ¼ 2, Cð0Þ is
decomposed equally into Cþð0Þ and C�ð0Þ and the approximate solutions are displayed at times

t ¼ 0; 0:25; 0:75 and 4. In Fig. 12 Lx ¼ 3, Cð0Þ contains two transition points between Cþð0Þ and C�ð0Þ and
the approximate solutions are displayed at times t ¼ 0; 0:12; 0:32 and 0.4.

Figs. 11 and 13 take the same form as Figs. 10 and 12 except that here level set and sharp interface

simulations are compared. In Fig. 11 Lx ¼ 20, Cð0Þ is decomposed equally into Cþð0Þ and C�ð0Þ and the

Fig. 9. Evolutionary closed curve sharp interface solutions.

Fig. 10. Comparison of sharp interface and phase field solutions with Lx ¼ 2.
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approximate solutions are displayed at times t ¼ 0; 3; 5:5 and 10. In Fig. 13 the approximate solutions are

displayed at times t ¼ 0; 0:2; 0:4 and 0.6.

Finally, we show a computation, Fig. 14, which yields a morphology similar to Fig. 3. The left-hand

subplot shows the initial condition while the right-hand subplot shows the solution at time t ¼ 11.
All the phase field and level set simulations are computed using uniform grids with mesh size h, while the

background meshes in the sharp interface simulations are uniform grids with mesh size ~hh. The values of the
discretization parameters h;Dt; etc. used in the simulations are given in Tables 1 and 2, in which a �-� is used
to denote non-applicability.

Remark. Experimental stability analysis of the three schemes yields the following stability results; for

stability of the phase field and level set explicit time discretizations we require Dt6 h2=4 and Dt6 h2=2,
respectively, while for the sharp interface semi-implicit discretization it suffices to have Dt6Ch.

5. Conclusion

We consider numerically mathematical models for bidirectional grain boundary dynamics in thin films.

The problem is reduced to a two-dimensional one for x 2 X ¼ ð0; LxÞ � ð0; LyÞ, where X corresponds to the

top face of the film. We assume that the solute atoms from the vapour surrounding the film diffuse into the

film very rapidly such that the concentration uðx; tÞ of solute atoms in the film is equal to 1 if the grain

boundary has passed through the point x and 0 otherwise. We present three models; sharp interface, phase

field and level set. The simulations show good agreement between the solutions of the three models. Also

there is good agreement between the simulations presented here and those seen in [10] where various ex-

Fig. 11. Comparison of sharp interface and level set solutions with Lx ¼ 20.
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Fig. 13. Comparison of sharp interface and level set solutions.

Fig. 12. Comparison of sharp interface and phase field solutions.
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perimentally observed effects, such as the formation of double seams, are displayed. Indeed our simulations

in Fig. 9, for example, replicate microstructure found in Fe foils exposed to Zn vapour, see [11].

We conclude with a brief comparison of the three models.

• Computations for both the double obstacle phase field and level set method are performed in a narrow
transition layer, of width pe and 2e, respectively. Across the interfacial layer we found around 15 grid

points have been adequate for the purpose of the paper. For small e the order parameter u takes the

form sinðdðxÞ=eÞ across the interface whereas the level set function is approximately dðxÞ in the neigh-

bourhood of the interface after re-initialization; here dðxÞ denotes the distance to the zero level set of u
and x. Observe that for small dð�Þ the order parameter is close to being a scaled distance function.

• In terms of computation time the sharp interface model is significantly faster than the other two models;

however, it has the draw back that topological changes cannot be dealt with.

Fig. 14. Morphology similar to that of Fig. 3.

Table 1

Parameters used in sharp interface simulations Figs. 6–9

M h :¼ Lx=M Dt ~hh

Fig. 6 – top subplots 200 1/200 h=4 1/300

Fig. 6 – bottom subplots 200 1/100 h=4 1/300

Fig. 7 – top subplots 200 2/100 h=4 1/100

Fig. 7 – bottom subplots 400 1/500 h=40 1/30

Fig. 8 200 3/200 h=20 1/200

Fig. 9 600 1/3 h=40 2/9

Table 2

Parameters used in Figs. 10–13

Sharp interface Phase field Level set

M h :¼ Lx=M Dt ~hh h Dt e h Dt e ~ee e�

Fig. 10 200 2/100 h=4 1/100 1/300 h2=4 0.015 – – – – –

Fig. 11 400 1/500 h=40 1/30 – – – 1/30 h2=2 0.23 e=2 3e=4
Fig. 12 200 3/200 h=20 1/200 1/200 h2=4 0.025 – – – – –

Fig. 13 600 7/300 h=40 7/450 – – – 7/600 h2=2 0.1 12e=25 e=2
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• The advantage that the phase field model has over the level set model is that no re-initialization proce-

dure is required.
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